1.	(a)	(i)	A – 4227; B – 4665;	2	
		(ii)	mice from line A eat mainly food from grass borders / mice from line B eat mainly wheat seeds;	1	
	(b)	only	2 mice from line A analysed after sowing / migration;	1	
	(c)		biodegradable; entrated to toxic levels in food chain;	2	[6]
2.	(a)	(i)	mutualism is relationship where both organisms benefit; <i>Rhizobium</i> gains ATP / organic compounds named organic compound / photosynthetic product; legume gains ammonia /ammonium;	3	
		(ii)	reaction requires large amounts of energy / 15 ATP; obtained from respiration of products of photosynthesis;	2	
	(b)	sapro secre relea amm then proc by n Allo	ophytic / putrefying (microorganisms) / obiotic / ammonifiers / decomposers; ete enzymes which digest organic compounds; using ammonia; nonia converted to nitrite; to nitrate; esses are oxidation reactions; itrifying bacteria / nitrification; w credit for one correctly named example; <i>Nitrosomas / Nitrobacter</i> in correct place	max. 5	[10]
3.	(a)	extra	omposers secrete enzymes / onto organic matter/ food/ acellular breakdown; itivores ingest / eat/ take in organic matter/food first;	2	
	(b)	prov Add	k down larger pieces of dead organic matter; iding more surface for microbial activity; products of excretion e nutrients/nitrogen / higher nitrogen carbon ratio;		
			tion by e.g. tunnelling; eases oxygen content for respiration of microorganisms;	max 4	[6]

PMT

4.	(a)	Identification of abiotic factor which would affect maize growth; Method of measuring gives appropriate quantitative data/at intervals;	2	
	(b)	Reduce light; Reduce water; Reduce mineral ions; Reduce wind; Increase humidity; Reduce temperature (by shading);	max 2	
	(c)	Maize and beans have different niches / different <u>nutritional</u> requirements / use different minerals; Exploit environment more effectively; As take water/mineral ions from different depths in soil;	max 2	[6]
5.	(a)	Few planktonic organisms / algae (to intercept light); Because few nutrients added;	2	
	(b)	(i) Mutualism / symbiosis;	1	
		 (ii) Algae photosynthesise; Take in carbon dioxide; producing carbohydrates / named / carbohydrate which coral can utilis 	e; 3	
	(c)	Increase in concentration of nitrates / phosphates; From sewage / organic pollution / effluent (from increasing tourist industry); Stimulation of seaweed / plant growth; Seaweed covers coral preventing light reaching algae; Seaweed prevents tentacles of coral setting up feeding current; Increased number of (planktonic) algae (increases cloudiness); Less light able to penetrate to algae in coral;	max 6	[12]
6.	(a)	Leaching/washed out (by rain) and denitrification/conversion to nitrogen;	1	
	(b)	Some nitrates lost from soil; Milk contains some nitrogen/protein; Milk is being removed/nitrogen in milk not allowed to recycle;	2	

	(c)	Saprophytic Nitrifying bacteria/named bacteria; bacteria				
	Nitrogen in urine and faeces		-	\rightarrow Ammonia (\rightarrow Nitrite) \rightarrow Nitrate;	2	[5]
7.	(a)	(i)	High conc. in	rise in autumn/winter, <u>or</u> winter, low in spring / summer. <i>should be accurate</i>)	1	
		(ii)	<u>Fertiliser</u> run-o Nitrification/b Sewage efflue Nitrogen fixati	reakdown of dead organic matter; nt;	max2	
	(b)	(i)		ptake by algae (<i>not: 'used' or 'used in growth</i>); / amino acid synthesis.	2	
		(ii)	Breakdown to by denitrifying	nitrogen; bacteria / named example, e.g. <i>Pseudomonas</i> .	2	[7]
8.	(a)	Part or ATP ATP ADP or Nucl Carry Othe	P needed to produ eic acids/DNA/F y genetic inform	ergy for specific process; ace ATP/needed in specific process; RNA; ation/involved in protein synthesis; <i>at may he accepted. Mark according to</i>	max 4	
	(b)	(i)	herbivores/dilu herbivores as t Fall in herbivo	in plants; lue to death of tissue/consumption by ition with non-radioactive phosphorus/rise in	max 4	
		(ii)	Decompose or compounds/ Release phosp	ganic compounds/phosphorus containing hates;	1	

(c) Form carbohydrates/sugars by photosynthesis; Carbohydrate is respired; Carbon dioxide is lost; Some will form cellulose; Is not digested/lost in faeces; max 3 [12] 9. (i) Beechwood = 73.3% / 73%, Hedge = 34.7% / 35%; (a) 1 (Rounding to significant figures must be correct, e.g. not 34%) To compare different numbers collected from the two sites; (ii) and show whether differences significant/ not just due to chance / to confirm or reject null hypothesis; 2 (b) Random / not biased to one colour; 1 (c) Predators find brown snails more easily in hedge than in beechwood; 1 (d) Detritivores break leaves into small pieces / increase surface area; Deposit faeces; Increases rate of microbial action; Bacterial fungi decompose / break down leaves or organic matter; Secretion of enzymes for digestion; Absorption of sugars; Respiration by detritivores/ microorganisms; Release of carbon dioxide; Carbon dioxide used in photosynthesis; max 7 [12] 10. (a) (i) named factor and it action;

	(rain water/erosion washes ions from rocks, temperature increases solubility, oxidation forms salts)	1
(ii)	(larger detritivores/named example) break up larger pieces (by feeding);	
	excrete nitrogenous wastes/faeces/droppings;	
	increases surface area available to bacteria/microorganisms/ fungi/decomposers;	
	decomposition by microorganisms releases minerals/nutrients to soil; an	ny 3

PMT

(b) grasses able to grow faster/more/better outcompete flowering plants (i) in higher nutrient supply; 2 (higher nutrient) reduces diversity; (ii) reduced level of minerals/nutrients enables flowering plants to compete more effectively for nitrate/phosphate/ nutrient; 1 [7] conversion of ammonium or ammonia into nitrite/ 11. (a) (i) ammonium or ammonia into nitrate/nitrite to nitrate 1 (ii) conversion of organic nitrogen/nitrate into nitrogen 1 nitrate limiting factor for plant growth; (b) increased growth of plants/algae/protoctists; nitrate needed by plants for protein synthesis; competition for light/effect of competition (e.g. plants underneath die); plants die, providing food supply for microorganisms/number of microbes increases; use of oxygen for respiration of microorganisms 5 max [7] 12. Conversion of nitrates/any nitrogen compound to nitrogen (gas); (a) (i) by (denitrifying) bacteria; 2 (ii) bisects contain proteins; Digested to amino acids; which can be absorbed/diffuse into leaf 2 max (b) High proportion of carbohydrate/starch in plant tissues; Cellulose (in cell walls); More protein in animal cells (such as muscle); 2 max (c) Proteins/amino acids broken down; by saprophytes/decomposers; deamination/ammonium compounds/ammonia formed; Ammonia converted to nitrate; by nitrifying bacteria; Nitrite as intermediate; Nitrate can be absorbed by roots; 6 max

PMT

[12]

13.	(a)	secrete/release enzymes/extracellular digestion; starch is digested first and cellulose, lignin later / starch is 'easier' to digest; different enzymes secreted / different fungi present;	3	
	(b)	starch/cellulose broken down; maltose/glucose produced/source of glucose;	2	
	(c)	(carbon dioxide) enters/diffuses into plant leaves/ via stomata; photosynthesis/fixed; glucose produced; sucrose; actively loaded; into phloem/ translocated/mass flow; starch produced;	4 max	
	(d)	some decomposers have enzymes with low optimum pH; caused by mutation; survive (in peat bogs) to <u>reproduce;</u> pass on favourable alleles;	3 max	[12]

.. .

. .

14. (a) (max 2 marks for each consequence of shortage and its effect on growth) reduced/lack of/unable to synthesise protein/amino acids; } lack of enzymes for metabolism / named metabolic process; } reduced/lack of/unable to synthesise DNA/nucleic acids/organic bases; mitosis/cell division reduced; reduced NADP/ less chlorophyll; } } reduced photosynthesis; reduced levels / less NAD; } reduced respiration; 4 max (b) (i) water potential of soil reduced/more negative/ reduced water potential gradient; less water moves into roots/water moves out of roots by osmosis; 2 (ii) nitrate washed/runs off /leached from fields;

 (ii) nitrate washed/runs off /leached from fields; algal bloom / increase in algal growth; reduced light to other producers; death of algae/producers; <u>increase</u> in decomposers/decomposition; <u>aerobic</u> respiration/requirement O₂ / increased BOD; 5 max

	(c)	uptake by active transport; oxidative phosphorylation/electron transport chain stops/slows down / glycolysis only occurs; Krebs cycle provides reduced NAD/FAD produces ATP; less ATP;	3 max	[14] QWC 1
15.	(a)	run off/leaching of nutrients/nitrates; leads to increased growth of algae/plants; competition for light / effect of competition; death of algae/plants; increases food supply / increases microorganisms/decomposers; respiration (of microorganisms) uses up oxygen/increases BOD; fish/animals die due to lack of oxygen;	5	
	(b)	leads to soil erosion; increase in run off carries more fertilisers; soil (+ fertilisers) blown into lake; fewer nutrients taken up by the hedges;	2 max	[7]
16.	(a)	secondary consumer / trophic level 3; second species to peak / in which phosphorus appears;	2	
	(b)	energy is lost at each level (so not enough left);	1	
	(c)	ATP; DNA; RNA / tRNA / mRNA; nucleotides (accept only if DNA/RNA not mentioned); phospholipids; NADP; RuBP;	2 max	[5]
17.	respi relea	olysis/breakdown/digestion of carbon compounds; ration (by bacteria); sing carbon dioxide; nup by the plant during photosynthesis;	3 max	[3]

1

PMT

		to form water;		
	(b)			
	(c)			
	 (d) secondary / tertiary structure; produces particular shape of active site; or (shape of) active site; 			
		 (e) sodium ions/ non-competitive inhibitor binds to enzyme at a site other than active site; resulting in change of shape of active site/no longer complementary; substrate can no longer bind with the enzyme / enzyme-substrate complexes no longer formed; 		
	(e)			[11]
19.	(a)	more proteins/amino acids; more DNA/nucleotides/nucleotide derivative; increased cell division/number of cells formed;	2 max	
	(b)	reduced light/shading; less photosynthesis;	2	
	(c)	 bacteria/fungi feed on dead matter saprobiotically; bacteria/fungi/microrganisms multiply; respiration uses up oxygen; converts proteins to amino acids; then to ammonium compounds; nitrifying bacteria; convert ammonium compounds; via nitrates; (nitrification) uses oxygen; 	6 max	
	 (d) lower species diversity/number of species; species tolerant to low oxygen thrive/species requiring high oxygen die out; 		2	[12]

[12]

PMT

20.	(a)	(i) (ii)	nitrogen-fixing; nitrifying; (names neutral, name only no mark)	2	
	(b)	(i)	growing legumes/ named legume; ploughed in/allowed to decompose/nitrogen-fixing (bacteria in nodules);		
			OR		
			allow cattle/named species/(farm) animals (to graze); add dung/urine;		
			OR		
			spread/add manure/slurry; decomposed to release nitrates/ammonia/nitrites;	2	
		(ii)	bare soil/fallow in winter/hedge removal; leaching (of nitrates)/soil erosion;		
			OR		
			uptake of nitrates/ammonium compounds by crop; harvesting crop/named crop which would be harvested;		
			OR		
			(farm) animals eat plants (in field); (then) animals removed;	2	[6]
21.	(a)	nitra algae	kdown of organic matter/sewage by enzymes from bacteria; tes/ammonia used by algae to make amino acids/proteins; e photosynthesise;		
			erial respiration uses O_2 /produces CO_2 for algae; iration) allows for reproduction/growth of bacteria;	4	
	(b)	warn	cient light penetration for photosynthesis (of algae); n leads to faster enzyme activity; r bacterial respiration/decomposition;		
		faste	r photosynthesis;	4	
		mere	eased growth/reproduction of bacteria/algae;	4	[8]